The Amazing Osteocyte
نویسنده
چکیده
The last decade has provided a virtual explosion of data on the molecular biology and function of osteocytes. Far from being the "passive placeholder in bone," this cell has been found to have numerous functions, such as acting as an orchestrator of bone remodeling through regulation of both osteoclast and osteoblast activity and also functioning as an endocrine cell. The osteocyte is a source of soluble factors not only to target cells on the bone surface but also to target distant organs, such as kidney, muscle, and other tissues. This cell plays a role in both phosphate metabolism and calcium availability and can remodel its perilacunar matrix. Osteocytes compose 90% to 95% of all bone cells in adult bone and are the longest lived bone cell, up to decades within their mineralized environment. As we age, these cells die, leaving behind empty lacunae that frequently micropetrose. In aged bone such as osteonecrotic bone, empty lacunae are associated with reduced remodeling. Inflammatory factors such as tumor necrosis factor and glucocorticoids used to treat inflammatory disease induce osteocyte cell death, but by different mechanisms with potentially different outcomes. Therefore, healthy, viable osteocytes are necessary for proper functionality of bone and other organs.
منابع مشابه
Osteocyte Shape and Mechanical Loading
There is considerable variation in the shape of osteocyte lacunae, which is likely to influence the function of osteocytes as the professional mechanosensors of bone. In this review, we first discussed how mechanical loading could affect the shape of osteocyte lacunae. Recent studies show that osteocyte lacunae are aligned to collagen. Since collagen fiber orientation is affected by loading mod...
متن کاملRole of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone
The osteocyte has long been considered to be the primary mechanosensory cell in the bone. Recent evidence has emerged that the osteocyte is also a key regulator of various bone and mineral metabolism and that its regulatory effects are in part mediated through locally produced osteocyte-derived factors, such as sclerostin, receptor activator of nuclear factor-kappa B ligand (RANKL), and fibrobl...
متن کاملDecrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone.
Aging decreases the human femur's fatigue resistance, impact energy absorption, and the ability to withstand load. Changes in the osteocyte distribution and in their elemental composition might be involved in age-related bone impairment. To address this question, we carried out a histomorphometric assessment of the osteocyte lacunar distribution in the periosteal and endosteal human femoral cor...
متن کاملDegeneration of the osteocyte network in the C57BL/6 mouse model of aging
Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young...
متن کاملExtracellular Matrix Mineralization Promotes E11/gp38 Glycoprotein Expression and Drives Osteocytic Differentiation
Osteocytes are terminally differentiated osteoblasts which reside in a mineralized extracellular matrix (ECM). The factors that regulate this differentiation process are unknown. We have investigated whether ECM mineralization could promote osteocyte formation. To do this we have utilised MLO-A5 pre-osteocyte-like cells and western blotting and comparative RT-PCR to examine whether the expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2011